VII. ONE-PARTICLE QUANTUM MECHANICS AND PROPAGATORS

A. Time-evolution for one particle and the propagator

In order to get used to the concept of a sp propagator in a many-particle system, it is useful to reformulate the problem for one particle using this language. From standard Quantum Mechanics [26] one obtains the result that the time evolution of a state is generated by the Hamiltonian. Denoting the state of a particle with quantum numbers α at time t_0 by $|\alpha, t_0\rangle$, one obtains at time t the state $|\alpha, t; t_0\rangle$, which has evolved from the initial state according to

$$|\alpha, t_0; t\rangle = e^{-\frac{i}{\hbar}H(t-t_0)}|\alpha, t_0\rangle$$

for a Hamiltonian that does not depend on time. The correctness of this result can be checked by inserting this expression in the Schrödinger equation

$$i\hbar \frac{\partial}{\partial t}|\alpha, t_0; t\rangle = H|\alpha, t_0; t\rangle.$$ \hspace{1cm} (383)

This result for $|\alpha, t_0; t\rangle$ can be written in terms of the wave function of the particle at time t

$$\langle \mathbf{r}|\alpha, t_0; t\rangle = \psi(\mathbf{r}, t)$$

$$= \langle \mathbf{r}|e^{-\frac{i}{\hbar}H(t-t_0)}|\alpha, t_0\rangle$$

$$= \int d^3r' \langle \mathbf{r}|e^{-\frac{i}{\hbar}H(t-t_0)}|\mathbf{r}'\rangle \langle \mathbf{r}'|\alpha, t_0\rangle$$

$$= i \int d^3r' G(\mathbf{r}, \mathbf{r}'; t-t_0)\psi(\mathbf{r}', t_0)$$ \hspace{1cm} (384)

where G is referred to as the propagator or Green’s function

$$G(\mathbf{r}, \mathbf{r}'; t-t_0) = -i \langle \mathbf{r}|e^{-\frac{i}{\hbar}H(t-t_0)}|\mathbf{r}'\rangle.$$ \hspace{1cm} (385)

Its meaning can be illustrated by recalling Huygens’ principle. Eq. (384) shows that the wave function at \mathbf{r} and t is determined by the wave function at the original time t_0, receiving contributions from all \mathbf{r}' which are weighted by the amplitude G. Note that knowledge of the initial wave function and the propagator G thus allows the construction of the wavefunction at any time $t > t_0$.

Using

$$H |n\rangle = \epsilon_n |n\rangle$$ \hspace{1cm} (386)

for the exact eigenstates of H, assuming a discrete spectrum for simplicity here, alternative ways of writing the propagator include

$$G(\mathbf{r}, \mathbf{r}'; t-t_0) = -i \langle \mathbf{r}|e^{-\frac{i}{\hbar}H(t-t_0)}|\mathbf{r}'\rangle$$

$$= -i \langle 0|a_\mathbf{r}e^{-\frac{i}{\hbar}(t-t_0)}a_\mathbf{r}^\dagger |0\rangle$$

$$= -i \sum_n \langle 0|a_\mathbf{r} |n\rangle \langle n|a_\mathbf{r}^\dagger |0\rangle e^{-\frac{i}{\hbar}\epsilon_n (t-t_0)}$$

$$= -i \sum_n u_n(\mathbf{r})u_n^*(\mathbf{r}')e^{-\frac{i}{\hbar}\epsilon_n (t-t_0)}$$ \hspace{1cm} (387)

To include the causality condition, it is convenient to multiply the stepfunction $\theta(t-t_0)$ into this expression. It is practical to consider the Fourier transform (FT) of the propagator in order to arrive at useful nonperturbative solution methods. To work out this FT the following representation of the stepfunction can be used

$$\theta(t-t_0) = -\int \frac{d\omega'}{2\pi i} \frac{e^{-i\omega' (t-t_0)}}{\omega' + i\eta}.$$ \hspace{1cm} (388)

Note that $\eta \downarrow 0$ is implied. For $t > t_0$, the integration path can be closed in the lower half plane and the contribution of the enclosed pole yields a result equal to 1. For $t < t_0$, one can close the contour in the upper half plane which
yields a vanishing result since no pole is enclosed. At \(t = t_0 \) the stepfunction jumps from 0 to 1. As a result one obtains for the derivative
\[
\frac{d}{dt}\theta(t - t_0) = \delta(t - t_0).
\]
(389)

The FT of the propagator then reads in various alternative forms
\[
G(\mathbf{r}, \mathbf{r}'; \omega) = -i \int_0^\infty dt(t - t_0) e^{i\omega(t - t_0)} \sum_n u_n(\mathbf{r}) u_n^*(\mathbf{r}') e^{-\frac{i}{\hbar} \epsilon_n (t - t_0)}
\]
\[
= \frac{\hbar}{\hbar \omega - \epsilon_n + i\eta} \sum_n \langle 0| a_\epsilon| n \rangle \langle n| a_\epsilon^\dagger |0 \rangle
\]
\[
= \frac{\hbar}{\hbar \omega - H + i\eta} | a_\epsilon^\dagger |0 \rangle
\]
\[
= \frac{\hbar}{\hbar \omega - H + i\eta} | \mathbf{r}' \rangle.
\]
(390)

The inclusion of the \(i\eta \) term in the denominator therefore results from the condition \(t > t_0 \) (time going forward). Some of the expressions for \(G \) will have their counterpart for the sp propagator in a many-particle system. Note that for notational convenience the spin quantum number has been suppressed. It is important to realize that one can consider the propagator in any sp basis
\[
G(\alpha, \beta; \omega) = \frac{\hbar}{\hbar \omega - H_0 + i\eta} | a_\alpha \rangle \langle a_\beta | 0 \rangle,
\]
(391)

where \(\alpha \) represents a complete set of sp quantum numbers. This exact propagator can be related to an approximate propagator by using \(H = H_0 + V \) and the following operator identity
\[
\frac{1}{A - B} = \frac{1}{A} + \frac{A}{A - B} \frac{1}{A - B},
\]
(392)

with \(A = \hbar \omega - H_0 + i\eta \) and \(B = V \). This operator equation relates the operator for \(G \), involving \(H \),
\[
G = \frac{\hbar}{\hbar \omega - H + i\eta}
\]
(393)

to the corresponding operator \(G^{(0)} \), involving \(H_0 \), and the potential \(V \)
\[
G = G^{(0)} + G^{(0)} \frac{V}{\hbar} G^{(0)}
\]
\[
= G^{(0)} + G^{(0)} \frac{V}{\hbar} G^{(0)} + G^{(0)} \frac{V}{\hbar} G^{(0)} \frac{V}{\hbar} G^{(0)} + ...
\]
(394)

The unperturbed propagator, which is given by
\[
G^{(0)}(\alpha, \beta; \omega) = \frac{\hbar}{\hbar \omega - H_0 + i\eta} | a_\alpha \rangle \langle a_\beta | 0 \rangle,
\]
(395)

can then be used to obtain
\[
\hbar \langle \alpha | \frac{1}{\hbar \omega - H_0 + i\eta} | \beta \rangle = \hbar \langle \alpha | \frac{1}{\hbar \omega - H_0 + i\eta} | \beta \rangle
\]
\[
+ \sum_{\gamma \delta} \hbar \langle \alpha | \frac{1}{\hbar \omega - H_0 + i\eta} | \gamma \rangle \frac{1}{\hbar} \langle \gamma | V | \delta \rangle \hbar \langle \delta | \frac{1}{\hbar \omega - H + i\eta} | \beta \rangle
\]
(396)

or
\[G(\alpha, \beta; \omega) = G^{(0)}(\alpha, \beta; \omega) + \sum_{\gamma, \delta} G^{(0)}(\alpha, \gamma; \omega) \frac{1}{\hbar} \langle \gamma | V | \delta \rangle G(\delta, \beta; \omega). \] (397)

A general procedure can now be used to obtain from the equation for \(G \) the relevant information related to \(H \). This procedure can also be used to solve the corresponding propagator equation in the medium with both an energy-independent as well as an energy-dependent potential. In order to obtain the usual results, an energy-independent potential will be used. The eigenkets and -energies of \(H \) are denoted by

\[H |m\rangle = \epsilon_m |m\rangle \]

for discrete states \((\epsilon_m < 0)\) and by

\[H |\mu\rangle = \epsilon_\mu |\mu\rangle \]

for continuum states \((\epsilon_\mu > 0)\). One then obtains

\[G(\alpha, \beta; \omega) = \hbar \sum_m \frac{\langle \alpha | m \rangle \langle m | \beta \rangle}{\hbar \omega - \epsilon_m + i\eta} + \hbar \int_0^\infty \frac{d\mu}{\hbar \omega - \epsilon_\mu + i\eta}. \] (398)

Suppose \(V \) corresponds to a finite well, like in the case of a Woods-Saxon potential, and \(H_0 = T \). One can then choose \(\{ |\alpha\rangle \} = \{ |p\rangle \} \) for example. To obtain the equation for the bound state energies from the propagator equation, one can use the following recipe. Calculate :

\[\lim_{\hbar \omega \to \epsilon_n} \left(\hbar \omega - \epsilon_n \right) \{ G = G^{(0)} + G^{(0)} \frac{V}{\hbar} G \}. \] (399)

The three limits involved give

\[\lim_{\hbar \omega \to \epsilon_n} \left(\hbar \omega - \epsilon_n \right) \{ \hbar \sum_m \frac{\langle \alpha | m \rangle \langle m | \beta \rangle}{\hbar \omega - \epsilon_m + i\eta} + \ldots \} = \hbar \langle \alpha | n \rangle \langle n | \beta \rangle \]

\[\Rightarrow \hbar \langle p | n \rangle \langle n | p' \rangle, \] (400)

\[\lim_{\hbar \omega \to \epsilon_n} \left(\hbar \omega - \epsilon_n \right) \hbar \langle \alpha | \frac{1}{\hbar \omega - T + i\eta} | \beta \rangle \Rightarrow \lim_{\hbar \omega \to \epsilon_n} \left(\hbar \omega - \epsilon_n \right) \hbar \frac{\delta(p - p')}{\hbar \omega - \frac{T}{2} + i\eta} = 0, \] (401)

and

\[\lim_{\hbar \omega \to \epsilon_n} \left(\hbar \omega - \epsilon_n \right) \times \hbar \sum_{\gamma, \delta} \{ \alpha | \frac{1}{\hbar \omega - T + i\eta} | \gamma \rangle \langle \gamma | V | \delta \rangle \left(\sum_m \frac{\langle \delta | m \rangle \langle m | \beta \rangle}{\hbar \omega - \epsilon_m + i\eta} + \ldots \right) \}

\[= \hbar \sum_{\gamma, \delta} \{ \alpha | \frac{1}{\epsilon_n - T} | \gamma \rangle \langle \gamma | V | \delta \rangle \langle \delta | n \rangle \langle n | \beta \rangle \}

\[\Rightarrow \hbar \int dp'' \frac{1}{\epsilon_n - \frac{T}{2m}} \langle p | V | p'' \rangle \langle p'' | n \rangle \langle n | p' \rangle. \] (402)

Collecting the two remaining terms, one has

\[\langle p | n \rangle = \frac{1}{\epsilon_n - \frac{T}{2m}} \int dp'' \langle p | V | p'' \rangle \langle p'' | n \rangle, \] (403)

or, rearranging slightly and noting that \(\langle p | n \rangle = \phi_n(p) \), the momentum space wave function, one obtains

\[\frac{p^2}{2m} \phi_n(p) + \int dp'' \langle p | V | p'' \rangle \phi_n(p'') = \epsilon_n \phi_n(p), \] (404)

which is the Schrödinger equation in momentum space.
To practice manipulating this type of equation, one can also keep things general and collect the results from Eqs. (400)-(402) and obtain

\[
\langle \alpha | n \rangle = \sum_{\gamma \delta} \langle \alpha | \frac{1}{e_n - H_0} | \gamma \rangle \langle \gamma | V | \delta \rangle \langle \delta | n \rangle.
\]

(405)

By multiplying this equation with \(\langle \beta | (e_n - H_0) | \alpha \rangle \) and summing over \(\alpha \), one can reduce this equation to

\[
\sum_{\alpha} \langle \beta | (e_n - H_0) | \alpha \rangle \langle \alpha | n \rangle = \sum_{\delta} \langle \beta | V | \delta \rangle \langle \delta | n \rangle,
\]

(406)

which is of course equivalent to

\[
e_n \langle \beta | n \rangle = \sum_{\alpha} \{ \langle \beta | H_0 | \alpha \rangle + \langle \beta | V | \alpha \rangle \} \langle \alpha | n \rangle,
\]

(407)

the matrix form of the Schrödinger eigenvalue equation in the basis \(\{ | \alpha \rangle \} \).

Another useful exercise for later applications is to consider the issue of normalization. Near the eigenvalue \(e_n \) one can write the propagator as

\[
G(\alpha, \beta; \omega \rightarrow e_n) = \frac{n}{\hbar \omega - e_n} \langle \alpha | \frac{n}{| \delta \rangle} + f_{\alpha \beta}(\omega),
\]

(408)

where \(f \) is well-behaved at \(e_n \). The smooth behavior of \(G^{(0)} \) at this energy also implies that near \(e_n \)

\[
\frac{G^{(0)}(\omega)}{\omega - e_n} = \frac{G^{(0)}(e_n)}{\omega - e_n} + \frac{\partial G^{(0)}}{\partial \omega} \Bigg|_{e_n}.
\]

(409)

Inserting Eq. (408) in the propagator equation (397) using Eq. (409) and the smoothness of \(f \) one obtains

\[
\frac{n}{\hbar \omega - e_n} \langle \alpha | \frac{n}{| \beta \rangle} + f_{\alpha \beta}(e_n) = G^{(0)}(\alpha, \beta; e_n) + \sum_{\gamma \delta} G^{(0)}(\alpha, \gamma; e_n) \frac{1}{\hbar} \langle \gamma | V | \delta \rangle \left\{ \frac{n}{\hbar \omega - e_n} + f_{\delta \beta}(e_n) \right\}
\]

\[
= G^{(0)}(\alpha, \beta; e_n) + \sum_{\gamma \delta} G^{(0)}(\alpha, \gamma; e_n) \frac{1}{\hbar} \langle \gamma | V | \delta \rangle \frac{n}{\hbar \omega - e_n} + \sum_{\gamma \delta} \frac{\partial G^{(0)}(\alpha, \gamma; \omega)}{\partial \omega} \frac{n}{\hbar \omega - e_n} \langle \gamma | V | \delta \rangle \langle \delta | n \rangle \langle n | \beta \rangle.
\]

(410)

The first term on the left and the second on the right just represent the original eigenvalue equation (together these terms represent the singular terms of the propagator equation) and therefore are equal to each other. It is useful to multiply the remaining terms by \(\langle n | \rho \rangle \langle \rho | (e_n - H_0) | \alpha \rangle \) while summing over both \(\rho \) and \(\alpha \). One can convince oneself that the terms containing \(f \) are then equal. Leaving these out, the rest of the terms yield

\[
0 = \frac{n}{\hbar} \langle \beta | n \rangle - \sum_{\gamma \delta \rho} \langle n | \rho \rangle \langle \rho | \frac{n}{\hbar \omega - H_0} | \gamma \rangle \langle \gamma | V | \delta \rangle \langle \delta | n \rangle \langle n | \beta \rangle,
\]

(411)

where the derivative of \(G^{(0)} \) has been explicitly performed. One may now recognize the righthand side of Eq. (405) in this result to finally obtain

\[
0 = 1 - \sum_{\rho} \langle n | \rho \rangle \langle \rho | n \rangle,
\]

(412)

which is the not unexpected result for the normalization. It is useful for future reference to note that the normalization to 1 is related to the presence of \(G^{(0)} \) in the propagator equation and that it is in principle possible to include an energy-dependent interaction term in this discussion (which would yield an extra term in the normalization condition).
B. Diagram Rules for the Single-Particle Propagator

It is possible to generate a series of diagrams which represent the contributions to the sp propagator in a perturbation expansion in the potential V. These terms can be obtained algebraically by iterating the equation for the sp propagator. It is convenient to choose \(\{|\alpha\} \) to be eigenstates of \(H_0 \) with eigenvalues \(\{\epsilon_a\} \). One then obtains

\[
G^{(0)}(\alpha, \beta; \omega) = \frac{1}{\hbar^2 \omega - \epsilon_a + i\eta}.
\]

(413)

For a contribution of \(k^{th} \) order in \(V \) one finds

Rule 1 Draw a directed line with \(k \) dashed (horizontal) interaction lines \(V \) and \(k + 1 \) directed unperturbed propagators \(g^{(0)} \)

Rule 2 Label external points (\(\alpha \) and \(\beta \))
Label each \(V \)

\[
\langle \gamma | V | \delta \rangle
\]

For each full line with arrow write

\[
G^{(0)}(\mu, \nu; \omega)
\]

Rule 3 Sum (integrate) over all internal quantum numbers

Rule 4 Include a factor \((1/\hbar)^k \)

EXAMPLES OF DIAGRAMS IN THE SINGLE-PARTICLE PROBLEM

\[
G^{(0)}(\alpha, \beta; \omega)
\]

\[
\sum_{\gamma, \delta} G^{(0)}(\alpha, \gamma; \omega) \left\{ \frac{1}{\hbar} \langle \gamma | V | \delta \rangle \right\} G^{(0)}(\delta, \beta; \omega)
\]

\[
\sum_{\gamma, \delta} G^{(0)}(\alpha, \gamma; \omega) \left\{ \left(\frac{1}{\hbar} \right)^2 \sum_{\epsilon, \theta} \langle \gamma | V | \epsilon \rangle G^{(0)}(\epsilon, \theta; \omega) \langle \theta | V | \delta \rangle \right\} G^{(0)}(\delta, \beta; \omega)
\]

and so on for third and higher order terms in \(V \). One can resum these terms (using operator notation)

\[
G = G^{(0)} + G^{(0)} \frac{V}{\hbar} G
\]

\[
= G^{(0)} + G \frac{V}{\hbar} G^{(0)}
\]
\[G^{(0)} + G^{(0)} \frac{T}{\hbar} G^{(0)}, \]
\[T = V + V \frac{G^{(0)}}{\hbar} V + V \frac{G^{(0)}}{\hbar} V \frac{G^{(0)}}{\hbar} V + \ldots \]
\[= V + V \frac{G^{(0)}}{\hbar} \{ V + V \frac{G^{(0)}}{\hbar} V + \ldots \} \]
\[= V + V \frac{G^{(0)}}{\hbar} T. \]

\(T \) is simply the \(T \)-matrix used for the calculation of the scattering matrix. The corresponding equation is called the Lippmann-Schwinger equation. This formulation in terms of \(T \)-matrices is therefore practical for continuum solutions. Considering again the problem in which \(V \) represents a finite well and \(H_0 = T \), one can choose the sp basis (including spin this time explicitly in the case of fermions) \(\{ \alpha \} = \{ p m_n \} \) and one obtains
\[\langle p_1 m_1 | T(\omega) | p_2 m_2 \rangle = \langle p_1 m_1 | V | p_2 m_2 \rangle + \sum_m \int dp \langle p_1 m_1 | V | p m \rangle \frac{1}{\hbar \omega - \frac{p^2}{2m} + i\eta} \langle p m | T(\omega) | p_2 m_2 \rangle. \]

C. Scattering Theory and the Propagator

The elastic scattering process in free space is completely determined by one particular matrix element of the \(T \)-matrix. It is instructive to obtain this result explicitly. To this end it is useful to start from Eq. (414) and use its various incarnations to obtain the required analysis. One may start by choosing a wave vector basis and assume a spinless particle. The unperturbed Hamiltonian is the kinetic energy and the noninteracting propagator reads
\[G^{(0)}(k, k'; \omega) = \hbar \delta(k - k') \frac{1}{\hbar \omega - \frac{\hbar^2 k^2}{2m} + i\eta}. \]

Using this result in Eq. (414) one obtains
\[G(k, k'; \omega) = G^{(0)}(k, k'; \omega) + \frac{1}{\hbar} G^{(0)}(k; \omega) \int d^3 q |V|q G(q, k'; \omega) \]
\[= G^{(0)}(k, k'; \omega) + \frac{1}{\hbar} G^{(0)}(k; \omega) \langle k | T(\omega) | k' \rangle G^{(0)}(k'; \omega), \]

where
\[G^{(0)}(k, k'; \omega) = \delta(k - k') G^{(0)}(k; \omega) \] (419)
is the noninteracting propagator. This second equality in Eq. (418) is particularly useful for the asymptotic analysis to be explored below. It is important to realize that the usual results from scattering theory are obtained in the coordinate representation. The relevant double Fourier transform of the propagator is given by
\[G(r, r'; \omega) = \frac{1}{(2\pi)^3} \int d^3 k \int d^3 k' \exp \{ ik \cdot r \} G(k, k'; \omega) \exp \{ -ik' \cdot r' \}. \]

The transform of the noninteracting propagator only involves one integration due to the presence of the \(\delta \)-function in Eq. (419)
\[G^{(0)}(r, r'; \omega) = \frac{1}{(2\pi)^3} \int d^3 k \int d^3 k' \exp \{ ik \cdot r \} G^{(0)}(k, k'; \omega) \exp \{ -ik' \cdot r' \} \]
\[= \frac{1}{(2\pi)^3} \int d^3 k \exp \{ ik \cdot (r - r') \} G^{(0)}(k; \omega). \] (421)

The result for Eq. (418) can then be transformed to yield
\[G(r, r'; \omega) = G^{(0)}(r, r'; \omega) + \frac{1}{\hbar} \int d^3r_1 \int d^3r_2 \ G^{(0)}(r, r_1; \omega) (r_1 | V | r_2) G(r_2, r'; \omega) \]
\[= G^{(0)}(r, r'; \omega) + \frac{1}{\hbar} \int d^3r_1 \int d^3r_2 \ G^{(0)}(r, r_1; \omega) (r_1 | T(\omega) | r_2) G^{(0)}(r_2, r'; \omega). \] (422)

With this equation one can arrive at an asymptotic analysis and resulting definition of the cross section which is equivalent to a standard analysis involving the equation for the wave function.

To obtain the relation between the cross section and the propagator it is necessary to start with Eq. (422) and perform the Fourier transform of the noninteracting propagator (Eq. (417)) in Eq. (421). The on-shell momentum is defined by

\[\hbar \omega = \frac{\hbar^2 k_0^2}{2m}. \] (423)

After performing the angular integrals and extending the integration limit in \(k \) to \(-\infty\) one obtains (replacing \(\omega \) by \(k_0 \))

\[G^{(0)}(r, r'; \omega) = \frac{2m}{\hbar} \frac{1}{i |r - r'|} \frac{1}{8\pi^2} \int_{-\infty}^{\infty} dk \ k \exp \{ ik |r - r'| \} - \exp \{-ik |r - r'| \} \]
\[= \frac{2m}{\hbar} \frac{-1}{4\pi \sqrt{|r - r'|}} \exp \{ ik_0 |r - r'| \}, \] (424)

where contour integration in the complex momentum plane has been used to obtain the last equality. When \(r' \gg r \) one has the following result

\[k_0 |r - r'| = k_0 r' \sqrt{1 + \left(\frac{r'}{r} \right)^2} \approx k_0 r' - k_0 \hat{r}' \cdot r. \] (425)

Using this result one can write Eq. (424) as

\[G^{(0)}(r, r'; k_0) \to -m \frac{e^{ik_0 r'}}{2\pi \hbar r'} \exp \{ -ik_0 \hat{r}' \cdot r \} \]. (426)

Substituting this result in the second part of Eq. (422) for both \(r' \gg r \) and \(r' \gg r_2 \) demonstrates that \(G \) is separable and can be written as

\[G(r, r'; k_0) = -m \frac{e^{ik_0 r'}}{2\pi \hbar r'} \psi(r; k_0) \] (427)

in the asymptotic domain. By substituting this result in turn in Eq. (422) one obtains the standard integral equation for the wave function and the appropriate formulation for the asymptotic wave function to obtain the scattering amplitude

\[\psi(r; k_0) = \exp \{ -ik_0 \hat{r}' \cdot r \} + \frac{1}{\hbar} \int d^3r_1 \int d^3r_2 \ G^{(0)}(r, r_1; k_0) (r_1 | V | r_2) \psi(r_2; k_0) \]
\[= \exp \{ -ik_0 \hat{r}' \cdot r \} + \frac{1}{\hbar} \int d^3r_1 \int d^3r_2 \ G^{(0)}(r, r_1; k_0) (r_1 | T(k_0) | r_2) \exp \{ -ik_0 \hat{r}' \cdot r_2 \} \]. (428)

One may identify the origin of the motion in the direction of the negative \(z \)-axis, meaning that \(\hat{r}' \) points in that direction, so that \(k \equiv -k_0 \hat{r}' \) points into the positive \(z \)-direction. If one assumes that \(r \) is also much larger than the range of the potential, and, therefore much larger than any contributing value of \(r_1 \), one can use Eq. (426) again in the second part of Eq. (428) to identify the coefficient multiplying the outgoing spherical wave \(e^{ik_0 r'}/r \) as the scattering amplitude (while double Fourier transforming the \(T \)-matrix element back to momentum space)

\[f_{k_0}(\theta, \phi) = -\frac{4m\pi^2}{\hbar^2} \langle k' | T(k_0) | k \rangle, \] (429)

where \(\theta, \phi \) denote the angles associated with the direction of \(\hat{r} \) and \(k' \equiv k_0 \hat{r} \) corresponds to the momentum of the detected motion in the direction \(\hat{r} \) with the same absolute value \(k_0 \) as the initial state. The differential cross section for the direction \((\theta, \phi) \) is then simply the square of the scattering amplitude as given by Eq. (429)
\[
\frac{d\sigma}{d\Omega} = \left| f_{n_0}(\theta, \phi) \right|^2. \tag{430}
\]

The present formulation is closely tailored to the conventional experimental situation where a collimated beam propagates along the z-axis characterized by a given energy or momentum toward a target situated at the origin. Detection then takes place in a particular direction away from the origin characterized by angles θ and ϕ. One can follow a similar derivation for a particle with spin to obtain the elastic scattering amplitude ($|\mathbf{p}_f| = |\mathbf{p}_i|$)

\[
f_{m_f, m_i}(\theta, \phi) = -\frac{m}{2\pi} (2\pi)^3 \langle \mathbf{p}_f m_f | T(E = \frac{\mathbf{p}_f^2}{2m}) | \mathbf{p}_i m_i \rangle \tag{431}
\]

with θ and ϕ giving the direction of \mathbf{p}_f with respect to the z-axis which is defined by \mathbf{p}_i. The cross section is obtained from the usual relation

\[
\frac{d\sigma_{m_f, m_i}}{d\Omega} = |f_{m_f, m_i}(\theta, \phi)|^2. \tag{432}
\]

D. Partial Waves and Phase Shifts

Often the interaction is of short range. When this is the case, it is invariably useful to analyze the scattering process in an angular momentum basis since only a limited set of ℓ-values will contribute. The appropriate basis transformation from momentum space to an angular momentum basis was already used in Eq. (216) but is repeated here using wave vector notation

\[
|\mathbf{k}\rangle = \sum_{\ell m_\ell} |\ell m_\ell \rangle |\ell m_\ell \rangle = \sum_{\ell m_\ell} |\ell m_\ell \rangle Y_{\ell m_\ell}(\hat{\mathbf{k}}). \tag{433}
\]

In this basis the noninteracting propagator is given by

\[
G^{(0)}(\ell m_\ell, \ell' m'_{\ell'}; \omega) = \frac{\hbar}{i} \frac{\delta(k - k')}{k^2} \delta_{\ell \ell'} \delta_{m_\ell m'_{\ell'}} \frac{1}{\hbar \omega - \frac{i}{2} k^2/2m + i\eta} = \frac{\delta(k - k')}{k^2} \delta_{\ell \ell'} \delta_{m_\ell m'_{\ell'}} G^{(0)}(k; \omega). \tag{434}
\]

Since the energy has no angular dependence, the energy denominator is the same as in the wave vector basis (417). Expressing Eq. (444) in this angular momentum basis and assuming that the interaction is rotationally invariant (and therefore does not couple different ℓ-values) one has

\[
G_\ell(k, k'; \omega) = \frac{\delta(k - k')}{k^2} G^{(0)}(k; \omega) + \frac{1}{\hbar} G_\ell(k; \omega) \int_0^\infty dq q^2 \langle k|V' |q\rangle G_\ell(q, k'; \omega)
\]

\[
= \frac{\delta(k - k')}{k^2} G^{(0)}(k; \omega) + \frac{1}{\hbar} G^{(0)}(k; \omega) \langle k|T'(\omega)|k'\rangle G^{(0)}(k'; \omega). \tag{435}
\]

The equation for the effective interaction or T-matrix can be written in this basis as

\[
\langle k|T'(\omega)|k'\rangle = \langle k|V' |k'\rangle + \frac{1}{\hbar} \int_0^\infty dq q^2 \langle k|V' |q\rangle G^{(0)}(q; \omega) \langle q|T'(\omega)|k'\rangle. \tag{436}
\]

The coordinate space version of Eq. (435) is obtained by a double Fourier-Bessel transform

\[
\langle k\ell m_\ell | r \ell' m'_{\ell'} \rangle = \frac{2}{\pi} \int_0^\infty dk k^2 \int_0^\infty dk' k'^2 j_\ell(kr) j_{\ell'}(k'r') G_\ell(k, k'; \omega), \tag{437}
\]

which involves the transformation from angular momentum states with momentum to angular momentum states with position involving the spherical Bessel function [26]

\[
\langle k\ell m_\ell | r \ell' m'_{\ell'} \rangle = \delta_{\ell \ell'} \delta_{m_\ell m'_{\ell'}} \sqrt{\frac{2}{\pi}} j_\ell(kr). \tag{438}
\]

The corresponding result for the noninteracting part of the propagator, represented by the first term in Eq. (435), reduces to one integral on account of the delta-function which conserves relative momentum
\[
G_\ell^{(0)}(r, r'; \omega) = \frac{2}{\pi} \int_0^\infty dk \; k^2 \; j_\ell(kr)j_\ell(kr')G^{(0)}(k, \omega). \tag{439}
\]

The Fourier-Bessel transform of Eq. (435) has the following form
\[
G_\ell(r, r'; \omega) = G_\ell^{(0)}(r, r'; \omega) + \frac{1}{\hbar} \int_0^\infty dr_1 r_1^2 \int_0^\infty dr_2 r_2^2 \; G_\ell(r, r_1; \omega) \langle r_1|V'|r_2\rangle G_\ell(r_2, r'; \omega)
= G_\ell^{(0)}(r, r'; \omega) + \frac{1}{\hbar} \int_0^\infty dr_1 r_1^2 \int_0^\infty dr_2 r_2^2 \; G^{(0)}_\ell(r, r_1; \omega) \langle r_1|T'\omega\rangle\langle r_2\rangle G^{(0)}_\ell(r_2, r'; \omega). \tag{440}
\]

When the interaction \(V \) is local in coordinate space, only one integral in the first equality remains. The second equality can be used to study the asymptotic behavior of the propagator outside the range of the interaction. The integral in Eq. (439) can be performed analytically by employing contour integration in the complex momentum plane [54]. The spherical Bessel function are well-behaved so all the singularities are contained in the denominator. Consider \(r' > r \),
then one may replace
\[
 j_\ell(kr') = \frac{1}{2} \left[h_\ell(kr') + h_\ell^*(kr') \right], \tag{441}
\]
invoking the spherical Hankel functions \([26]\). One can convince oneself that the term involving \(j_\ell h_\ell \) decreases exponentially in the upper half \(k \)-plane, allowing the contour to be closed in the upper half-plane. The term involving \(j_\ell h_\ell^* \), similarly, requires a contour in the lower half-plane. One then obtains
\[
G^{(0)}_\ell(r, r'; k_0) = -ik_0 \frac{2m}{\hbar} j_\ell(k_0 r) h_\ell(k_0 r'). \tag{442}
\]

The coordinate argument in the spherical Hankel function must be the larger of \(r \) and \(r' \) and is denoted by \(r_> \), while the argument of the spherical Bessel function is the smaller and denoted by \(r_< \). For the current analysis it will be assumed that the interaction has a finite range, \(\langle r|V'|r'\rangle = 0 \) for \(r, r' \) larger than some \(r_0 \). Substituting Eq. (442) in the second part of Eq. (440) for \(r' > r \) and \(r' > r_0 \) yields
\[
G_\ell(r, r'; k_0) = -ik_0 \frac{2m}{\hbar} j_\ell(k_0 r) h_\ell(k_0 r')
+ \frac{1}{\hbar} \int_0^\infty dr_1 r_1^2 \int_0^\infty dr_2 r_2^2 \; G^{(0)}_\ell(r, r_1; k_0) \langle r_1|T'\omega(k_0)\rangle\langle r_2\rangle \left(-ik_0 \frac{2m}{\hbar} \right) j_\ell(k_0 r_2) h_\ell(k_0 r')
= -ik_0 \frac{2m}{\hbar} \psi_\ell(r; k_0) h_\ell(k_0 r'), \tag{443}
\]
where
\[
\psi_\ell(r; k_0) = j_\ell(k_0 r) + \frac{1}{\hbar} \int_0^\infty dr_1 r_1^2 \int_0^\infty dr_2 r_2^2 \; G^{(0)}_\ell(r, r_1; k_0) \langle r_1|T'\omega(k_0)\rangle\langle r_2\rangle j_\ell(k_0 r_2). \tag{444}
\]

including the replacement of \(\omega \) by \(k_0 \). This result demonstrates that under the given conditions the propagator separates as a product of a function \(r \) and a function of \(r' \). This result can be substituted into the first part of Eq. (440) to obtain the relevant integral equation for the wave function \(\psi \) (under the condition that \(r' > r_0 \))
\[
\psi_\ell(r; k_0) = j_\ell(k_0 r) + \frac{1}{\hbar} \int_0^\infty dr_1 r_1^2 \int_0^\infty dr_2 r_2^2 \; G^{(0)}_\ell(r, r_1; k_0) \langle r_1|V'\omega|r_2\rangle \psi_\ell(r_2; k_0), \tag{445}
\]
which can be found in standard textbooks (see e.g. [54] for the case of a local potential). It is derived here to demonstrate the relation between the propagator and the wave function.

The asymptotic analysis of the propagator can be performed by using Eq. (442) in Eq. (440) under the assumption that the propagator will be considered for \(r < r' \) while both these coordinates are larger than \(r_0 \), the range of the interaction. Values of \(r_1 \) and \(r_2 \) in Eq. (440) larger than \(r_0 \) yield no contributions to the integral. As a result, the effective interaction, \(T' \), has a range similar to the one of the bare interaction \(V \). Using the relation between spherical Bessel and Hankel functions (441), one obtains the asymptotic behavior of the propagator from the second part of Eq. (440) in the following form
\[G_\ell(r, r'; k_0) \rightarrow -i \left(\frac{m}{\hbar} \right) k_0 h_\ell(k_0 r') \]

\[
\begin{align*}
&\left\{ h_\ell'(k_0 r) + h_\ell(k_0 r) \left[1 - 4 i \frac{m}{\hbar^2 k_0} \int_0^\infty dr_1 \int_0^\infty dr_2 \begin{array}{c}
\sqrt{r_1} \langle r_1 | T^\ell(k_0) | r_2 \rangle j_\ell(k_0 r_1) j_\ell(k_0 r_2) \end{array} \right] \right\} \\
&= -i \frac{m}{\hbar} k_0 h_\ell(k_0 r) \left\{ h_\ell'(k_0 r) + h_\ell(k_0 r) \left[1 - 2\pi i \left(\frac{m k_0}{\hbar^2} \right) \langle k_0 | T^\ell(k_0) | k_0 \rangle \right] \right\} .
\end{align*}
\] (446)

In the last step of Eq. (446) one can return to the on-shell matrix element of the \(T \)-matrix in momentum space which completely determines the outcome of the scattering process. The term in square brackets corresponds to the \(S \)-matrix element in terms of which one can define the phase shift

\[
\langle k_0 | S^\ell(k_0) | k_0 \rangle = \left[1 - 2\pi i \left(\frac{m k_0}{\hbar^2} \right) \langle k_0 | T^\ell(k_0) | k_0 \rangle \right] \equiv e^{2i\delta_\ell} .
\] (447)

This result can be represented by

\[
\tan \delta_\ell = \frac{\text{Im} \langle k_0 | T^\ell(k_0) | k_0 \rangle}{\text{Re} \langle k_0 | T^\ell(k_0) | k_0 \rangle} ,
\] (448)

which explicitly shows that a nonzero imaginary part of the effective interaction is required to obtain a nonvanishing phase shift. In turn, this imaginary part of the interaction only appears for energies where the noninteracting propagator has a nonvanishing imaginary part. For the scattering this corresponds to all positive energies. By substituting the explicit form of the spherical Hankel functions for \(\ell = 0 \) in Eq. (446) one can construct the asymptotic propagator for the \(s \)-wave channel explicitly

\[
G_s(r, r'; k_0) \rightarrow -\frac{2m}{k_0 \hbar r} \frac{1}{rr'} e^{i(k_0 r' + \delta_\ell)} \sin(k_0 r' + \delta_\ell) .
\] (449)

The standard result for the asymptotic wave function is contained in this equation and the imaginary part of Eq. (449) is simply the product of these wave functions as a function of \(r \) and \(r' \), respectively. It is useful to write the scattering amplitude in terms of the on-shell \(T \)-matrix elements or phase shift [26]

\[
\begin{align*}
f(\theta, \phi) &= \sum_\ell \frac{2\ell + 1}{k_0} \left\{ -\frac{m k_0}{\hbar^2} \right\} \langle k_0 | T^\ell(k_0) | k_0 \rangle P_\ell(\cos \theta) \\
&= \sum_\ell \frac{2\ell + 1}{k_0} e^{i\delta_\ell} \sin \delta_\ell P_\ell(\cos \theta).
\end{align*}
\] (450)

With this result one can construct the differential cross section. For the total cross section one has

\[
\sigma_{t,el} = \frac{4\pi}{k_0^2} \sum_\ell (2\ell + 1) \sin^2 \delta_\ell .
\] (451)