(33) Determine the expectation value of the kinetic energy for N particles in terms of the relevant single-particle matrix elements by using the Slater determinant for the antisymmetric N-particle wave function (Eq. (1.56) in the handout).

(34) Derive all the anticommutation relations for fermion addition and removal operators.

(35) Work out the second-quantized form of

1. the charge density operator (use coordinate space)
2. the electrical current density operator (use a mixed basis of coordinate and momentum space)
3. the z-component of the spin density operator (coordinate space)

in the indicated single-particle basis.

(36) Consider antisymmetric two-particle states for the two p-shell electrons in 12C atoms. Determine all the allowed states for these two particles in the p-shell using

1. LS-coupling
2. jj-coupling.