QUANTUM MECHANICS II (524)
PROBLEM SET 8 (hand in March 26)

(29) Show that it is possible to obtain the following expression for the total cross section

\[\sigma_{\text{tot}} \simeq \frac{m^2}{\pi \hbar^2} \int d^3r \int d^3r' \ V(r)V(r') \frac{\sin^2(p|r - r'|/\hbar)}{p^2|r - r'|^2} \]

in two different ways.

a) By integrating the differential cross section computed to first-order Born approximation.

b) By applying the optical theorem to the scattering amplitude at zero degrees in the second-order Born approximation.

Use the spherical symmetry of the total cross section and note that \(V \) is also assumed to be spherically symmetric.

(30) Consider a potential

\[V = 0 \quad \text{for } r > R, \quad V = V_0 = \text{constant} \quad \text{for } r < R, \]

where \(V_0 \) may be positive or negative. Using the method of partial waves, show that for \(|V_0| \ll E = p^2/2m \) and \(pR/\hbar \ll 1 \) the differential cross section is isotropic and that the total cross section is given by

\[\sigma_{\text{tot}} = \frac{16\pi m^2 V_0^2 R^6}{9 \hbar^4}. \]
Suppose that the energy is now raised slightly. Show that the angular
distribution can then be written as

\[\frac{d\sigma}{d\Omega} = A + B \cos \theta. \]

Obtain an expression for \(A/B \).

(31) Prove that

\[\frac{\hbar^2}{2m} \langle r \mid \frac{1}{E - H_0 + i\eta} \mid r' \rangle = -i \frac{p}{\hbar} \sum_{\ell} \sum_{m} Y_{\ell m}(\hat{\mathbf{r}}) Y_{\ell m}^*(\hat{\mathbf{r}}') j_\ell(pr_\ell/\hbar) h_\ell^{(1)}(pr_\ell/\hbar), \]

where \(r_<(r_>) \) stands for the smaller (larger) of \(r \) and \(r' \). Use the appendix
of Sakurai for definitions of Bessel and Hankel functions.

(32) For spherically symmetric potentials one can write the
Lippmann-Schwinger equation in the partial wave basis as follows

\[|\Psi_{\ell m}^+\rangle = |\ell m\rangle + \frac{1}{E - H_0 + i\eta} V |\Psi_{\ell m}^+\rangle. \]

Use (31) to show that in the coordinate space basis this equation leads to
an integral equation for the radial wave function, \(\psi_\ell(p; r) \), as follows:

\[\psi_\ell(p; r) = j_\ell(pr/\hbar) - \frac{2mip}{\hbar^3} \int_0^\infty \, dr' \, r'^2 \, j_\ell(pr_\ell/\hbar) h_\ell^{(1)}(pr_\ell/\hbar) V(r') \psi_\ell(p; r'). \]